Skip to main content

Attractor Point


The 'attractor point', is a method that also uses powercopies, in addition to the influence of an attractor. In other words, the attractor is the element that controls the behavior of the powercopy within a set of relationships. The relationship between both (the powercopy and the attractor point) are established in two levels (not including the local level; the parameters of the powercopy). The first set of relationships are established on a global level; parameter that controls the the relationship between the powercopy and the attractor point. The second set of relationships are the rules. The second guid (rule) is a method that further controls the behavior of the overall form through its parameters. Each parameter has a value that establishes the relationship between the design elements - on a local scale; within the powercopy unite -  and a global scale - between the powercopy and the attractor point. The benefit of the rule is to help in predecting and defining the behavior of the overall form.


Image 1: The first step was to create to sets of points, and to create a smart cell that is positioned on one of the points.


Image 2: The second step was to create an attractor point. This point's relationship with the smart cell (powercopy) is established through a number of parameters. For example, if the distance of the attractor point changes, the circles radius (both inner and outer) are effected based on the relationship we have predefined within the parameters. The parameters used between both are on a global level. 




Images 3: shows the second set of creating a relationship between the elements which is the 'rule'. This role as mentioned perviously, adds additional level of control over the form. 


Image 4: shows how the set of cells react to the attractor point, in the X axis.


Image 5: shows the relationship of the cells and the attractor in the Y axis.







Comments

Popular posts from this blog

CORAL: D.O.E.s & Assemblies

Coral is a project that merges between both the Virtual Engagement and Materials Engagement classes. The goals of this project are: first, to translate the design from the digital environment into a physical object using knowledge and skills that we have developed in both classes during the past 14 weeks, and using state-of-the-art fabrication tools. Second, is to create a unit - part - that could be replicated and then put together  in an assembly - product. The assembly's dynamic nature was delivered through its parts that could be rearranged in various ways to produce different assembly configurations, and the ability to adapt to its context. The overall effect is similar to how a coral - organically - grows contextualizing its environment. As mentioned, the project will highlight some of the skills that were gained throughout the term required to complete this project, and are organized below as the project's development phases:  1. Digital Environment: 1.1. ...

Knowledge Patterns

For the last three weeks we have been working with powercopies (smart cells), understanding the potential, behavior, advantage, and logic of such a digital element in the design process. In "Knowledge Patterns", which is the assignment for this week, we are scripting the instantiation process of the User Defined Feature (UDF) or "special powercopies". This process allows us to achieve the required complexity in a digital model (through increasing or reducing the use of powercopies on a surface). In addition, the automated - and parametrically driven - process also allows the possibility for adjusting and revising the work, unlike the previous attempts in using powercopies.  In this assignment, and after going through the "bigger picture" and goals of knowledge patterns, we first create the layout (framework) for the work that will follow. But, in knowledge patterns the process will be slightly different and a will include a level of procedural ...

Algorithms: Design of Experiments

Design for experiments is an algorithmic based tool that is found in DP, which help the designer - us in this case - to evaluate and provide a set of possibilities for a designed object. This algorithmic approach and the operation of the tool relies on the set of data (input) provided that derive and control the possible results (outcomes); data in this case, are derived from the parameters that control the sketch. The value of this digital tool - and this computational approach - is to tackle design issues through a an infinite set of possibilities and outcomes, each of these results are evaluated based on measured properties, for example, in this assignment, the volume of the altered object is the source of evaluation.  Image 1: as any of the previous projects that have been presented, creating the sketch is the initial step. In this sketch the geometry (circle) is constrained and controlled through the construction geometry (horizontal and vertical lines), which a...