Skip to main content

Botanic Architecture (Product Assembly)



Botanic Architecture, is an assignment that takes modeling in Digital Project a step further into 3D modeling, a step into assembling a generative form. In this "Product Assembly" - which will be shown in the following images - that was inspired by the tree branch, its intentions was to conjunct the assignments of both Virtual and Material engagement classes. In Materials Engagement, the assignment was to cast ten alterations of a single object. As for Virtual engagement, the project was to design an assembly from a single unite (part), and then the overall configuration can be altered. So, I though the best approach for both assignment is to use a natural element that is generative by nature. In addition, importing this natural element (branch) in a virtual environment helped in exploring the different compositional alterations that this single part can produce - rather than having only ten, I had 36 different alturations. 


Image1: The physical object (branch) which was casted from plaster and was used for the Materials Engagement class. 


Image 2: The plaster "part" modeled in Digital Project. 


Image 3: The part's modeling process starts in a 2D sketch with a given set of constrains to define the relationship between it's geometry. 


Image 4: After the part is modeled in 2D then it is sent to a different working layout and assembled into a single 3D composition.


Image 5: The composition maintains the logic of constraints which were used for it's different parts to establish the relationship within the overall form. 



Image 6: Each part in the composition rotates separately in respect to other parts through a set formula. Every two parts (in contact) include a parameter that controls the rotation angle between them in relation to the base constraint (angle). So, when ever the base constraint is changed the composition refigures its self in respect to the formula given for each part.


Image 7: This is a visualization of how a virtual form is inspired by the natural generative relationships found in nature, and how its functionality may inspire its form. 


Comments

Popular posts from this blog

CORAL: D.O.E.s & Assemblies

Coral is a project that merges between both the Virtual Engagement and Materials Engagement classes. The goals of this project are: first, to translate the design from the digital environment into a physical object using knowledge and skills that we have developed in both classes during the past 14 weeks, and using state-of-the-art fabrication tools. Second, is to create a unit - part - that could be replicated and then put together  in an assembly - product. The assembly's dynamic nature was delivered through its parts that could be rearranged in various ways to produce different assembly configurations, and the ability to adapt to its context. The overall effect is similar to how a coral - organically - grows contextualizing its environment. As mentioned, the project will highlight some of the skills that were gained throughout the term required to complete this project, and are organized below as the project's development phases:  1. Digital Environment: 1.1. ...

Algorithms: Design of Experiments

Design for experiments is an algorithmic based tool that is found in DP, which help the designer - us in this case - to evaluate and provide a set of possibilities for a designed object. This algorithmic approach and the operation of the tool relies on the set of data (input) provided that derive and control the possible results (outcomes); data in this case, are derived from the parameters that control the sketch. The value of this digital tool - and this computational approach - is to tackle design issues through a an infinite set of possibilities and outcomes, each of these results are evaluated based on measured properties, for example, in this assignment, the volume of the altered object is the source of evaluation.  Image 1: as any of the previous projects that have been presented, creating the sketch is the initial step. In this sketch the geometry (circle) is constrained and controlled through the construction geometry (horizontal and vertical lines), which a...

Attractor Point

The 'attractor point', is a method that also uses powercopies, in addition to the influence of an attractor. In other words, the attractor is the element that controls the behavior of the powercopy within a set of relationships. The relationship between both (the powercopy and the attractor point) are established in two levels (not including the local level; the parameters of the powercopy). The first set of relationships are established on a global level; parameter that controls the the relationship between the powercopy and the attractor point. The second set of relationships are the rules. The second guid (rule) is a method that further controls the behavior of the overall form through its parameters. Each parameter has a value that establishes the relationship between the design elements - on a local scale; within the powercopy unite -  and a global scale - between the powercopy and the attractor point. The benefit of the rule is to help in predecting and defining the...