Skip to main content

Botanic Architecture (Product Assembly)



Botanic Architecture, is an assignment that takes modeling in Digital Project a step further into 3D modeling, a step into assembling a generative form. In this "Product Assembly" - which will be shown in the following images - that was inspired by the tree branch, its intentions was to conjunct the assignments of both Virtual and Material engagement classes. In Materials Engagement, the assignment was to cast ten alterations of a single object. As for Virtual engagement, the project was to design an assembly from a single unite (part), and then the overall configuration can be altered. So, I though the best approach for both assignment is to use a natural element that is generative by nature. In addition, importing this natural element (branch) in a virtual environment helped in exploring the different compositional alterations that this single part can produce - rather than having only ten, I had 36 different alturations. 


Image1: The physical object (branch) which was casted from plaster and was used for the Materials Engagement class. 


Image 2: The plaster "part" modeled in Digital Project. 


Image 3: The part's modeling process starts in a 2D sketch with a given set of constrains to define the relationship between it's geometry. 


Image 4: After the part is modeled in 2D then it is sent to a different working layout and assembled into a single 3D composition.


Image 5: The composition maintains the logic of constraints which were used for it's different parts to establish the relationship within the overall form. 



Image 6: Each part in the composition rotates separately in respect to other parts through a set formula. Every two parts (in contact) include a parameter that controls the rotation angle between them in relation to the base constraint (angle). So, when ever the base constraint is changed the composition refigures its self in respect to the formula given for each part.


Image 7: This is a visualization of how a virtual form is inspired by the natural generative relationships found in nature, and how its functionality may inspire its form. 


Comments

Popular posts from this blog

CORAL: D.O.E.s & Assemblies

Coral is a project that merges between both the Virtual Engagement and Materials Engagement classes. The goals of this project are: first, to translate the design from the digital environment into a physical object using knowledge and skills that we have developed in both classes during the past 14 weeks, and using state-of-the-art fabrication tools. Second, is to create a unit - part - that could be replicated and then put together  in an assembly - product. The assembly's dynamic nature was delivered through its parts that could be rearranged in various ways to produce different assembly configurations, and the ability to adapt to its context. The overall effect is similar to how a coral - organically - grows contextualizing its environment. As mentioned, the project will highlight some of the skills that were gained throughout the term required to complete this project, and are organized below as the project's development phases:  1. Digital Environment: 1.1. ...

Knowledge Patterns

For the last three weeks we have been working with powercopies (smart cells), understanding the potential, behavior, advantage, and logic of such a digital element in the design process. In "Knowledge Patterns", which is the assignment for this week, we are scripting the instantiation process of the User Defined Feature (UDF) or "special powercopies". This process allows us to achieve the required complexity in a digital model (through increasing or reducing the use of powercopies on a surface). In addition, the automated - and parametrically driven - process also allows the possibility for adjusting and revising the work, unlike the previous attempts in using powercopies.  In this assignment, and after going through the "bigger picture" and goals of knowledge patterns, we first create the layout (framework) for the work that will follow. But, in knowledge patterns the process will be slightly different and a will include a level of procedural ...

Algorithms: Design of Experiments

Design for experiments is an algorithmic based tool that is found in DP, which help the designer - us in this case - to evaluate and provide a set of possibilities for a designed object. This algorithmic approach and the operation of the tool relies on the set of data (input) provided that derive and control the possible results (outcomes); data in this case, are derived from the parameters that control the sketch. The value of this digital tool - and this computational approach - is to tackle design issues through a an infinite set of possibilities and outcomes, each of these results are evaluated based on measured properties, for example, in this assignment, the volume of the altered object is the source of evaluation.  Image 1: as any of the previous projects that have been presented, creating the sketch is the initial step. In this sketch the geometry (circle) is constrained and controlled through the construction geometry (horizontal and vertical lines), which a...