Skip to main content

Attractor Point


The 'attractor point', is a method that also uses powercopies, in addition to the influence of an attractor. In other words, the attractor is the element that controls the behavior of the powercopy within a set of relationships. The relationship between both (the powercopy and the attractor point) are established in two levels (not including the local level; the parameters of the powercopy). The first set of relationships are established on a global level; parameter that controls the the relationship between the powercopy and the attractor point. The second set of relationships are the rules. The second guid (rule) is a method that further controls the behavior of the overall form through its parameters. Each parameter has a value that establishes the relationship between the design elements - on a local scale; within the powercopy unite -  and a global scale - between the powercopy and the attractor point. The benefit of the rule is to help in predecting and defining the behavior of the overall form.


Image 1: The first step was to create to sets of points, and to create a smart cell that is positioned on one of the points.


Image 2: The second step was to create an attractor point. This point's relationship with the smart cell (powercopy) is established through a number of parameters. For example, if the distance of the attractor point changes, the circles radius (both inner and outer) are effected based on the relationship we have predefined within the parameters. The parameters used between both are on a global level. 




Images 3: shows the second set of creating a relationship between the elements which is the 'rule'. This role as mentioned perviously, adds additional level of control over the form. 


Image 4: shows how the set of cells react to the attractor point, in the X axis.


Image 5: shows the relationship of the cells and the attractor in the Y axis.







Comments

Popular posts from this blog

Folding: From The Physical To The Digital

This post is the third on the series of "folding" assignments. The earlier attempt of this project (http://dtbyemad.blogspot.com/2013/10/folding.html) did not show satisfying results. The form was controlled through a number of constraints and parameters that were not correctly assigned to the geometry, and the geometry itself in terms of its relationship - between one geometry and another - was not very well understood. So, in this post, the process of creating a "part" and a product was further investigated to achieve the required geometrical form and behavior.  Image 1: shows the intended form. The photos is from Paul Jackson's book "Folding Techniques For Designers From Sheet to Form".  Image 2: to be able to construct this form, first we will have to breakdown the geometry into individual  unit (a complete set of surfaces). Then this unit will be even broken down to individual surfaces, each surface will be separately placed

CORAL: D.O.E.s & Assemblies

Coral is a project that merges between both the Virtual Engagement and Materials Engagement classes. The goals of this project are: first, to translate the design from the digital environment into a physical object using knowledge and skills that we have developed in both classes during the past 14 weeks, and using state-of-the-art fabrication tools. Second, is to create a unit - part - that could be replicated and then put together  in an assembly - product. The assembly's dynamic nature was delivered through its parts that could be rearranged in various ways to produce different assembly configurations, and the ability to adapt to its context. The overall effect is similar to how a coral - organically - grows contextualizing its environment. As mentioned, the project will highlight some of the skills that were gained throughout the term required to complete this project, and are organized below as the project's development phases:  1. Digital Environment: 1.1. 2

Knowledge Patterns: Surface Panelling

We have been working for the past five weeks with Powercopies, a replication tool in Digital Project. But, the last couple of weeks we have been introduced to UDFs (User Identified Features), a tool similar to the powercopy, but much more advanced in the process of replication. we started exploring some of its abilities and potential last week (http://dtbyemad.blogspot.com/2013/11/knowledge-patterns.html) and continued this week to explore its power to panel a surface, basically, the possibility to cover a surface with a large of the same unit while being generatively responsive to its context. In part two of Knowledge patterns we will cover the framework that we have developed last week with tiles (in this assignment; surfaces).   A short brief on UDFs, they are similar in nature to power copies (replication tool), but are used to cover large areas with large numbers of the same unit (geometrical set that consists of curve, surfaces, point, parameters, constraints, rules